

Article

Historical emissions of HFC-23 (CHF3) in China and projections upon policy options by 2050

Xuekun Fang, Benjamin R. Miller, Shenshen Su, Jing Wu, Jianbo Zhang, and Jianxin Hu Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/es404995f • Publication Date (Web): 07 Mar 2014 Downloaded from http://pubs.acs.org on March 10, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Historical emissions of HFC-23 (CHF ₃) in China and projections
2	upon policy options by 2050
3	Xuekun Fang [†] , Benjamin R. Miller ^{#,\$} , ShenShen Su [†] , Jing Wu [†] , Jianbo Zhang [†] ,
5	[†] State Key Joint Laboratory for Environmental Simulation and Pollution Control,
6	College of Environmental Sciences and Engineering, Peking University, Beijing,
7	100871, China
8	[#] Cooperative Institute for Research in Environmental Sciences, University of
9	Colorado, Boulder, Colorado, USA
10	^{\$} Global Monitoring Division, ESRL, NOAA, Boulder, Colorado, USA
11	
12	* Corresponding author phone: 86 10 62756593; fax: 86 10 62760755; e-mail: jianxin@pku.edu.cn

13 (J. Hu)

14 **TOC**

16 Abstract:

17	Trifluoromethane (CHF ₃ , HFC-23) is one of the hydrofluorocarbons (HFCs) regulated
18	under the Kyoto Protocol with a global warming potential (GWP) of 14800 (100-year).
19	China's past, present and future HFC-23 emissions are of considerable interest to
20	researchers and policymakers involved in climate change. In this study, we compiled a
21	comprehensive historical inventory (1980–2012) and a projection (2013–2050) of
22	HFC-23 production, abatements and emissions in China. Results show that HFC-23
23	production in China increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr
24	$(228 \pm 31 \text{ Tg/yr CO}_2\text{-eq})$ in 2012, while actual HFC-23 emissions reached a peak of
25	10.5 ± 1.8 Gg/yr (155 ± 27 Tg/yr CO ₂ -eq) in 2006, and decreased to a minimum of
26	7.3 ± 1.3 Gg/yr (108 ± 19 Tg/yr CO ₂ -eq) in 2008 and 2009. Under the examined
27	business-as-usual (BAU) scenario, the cumulative emissions of HFC-23 in China over
28	the period 2013–2050 are projected to be 609 Gg (9015 Tg CO ₂ -eq which
29	approximates China's 2012 CO ₂ emissions). Currently, China's annual HFC-23
30	emissions are much higher than those from the developed countries, while it is
31	estimated that by year 2027, China's historic contribution to the global atmospheric
32	burden of HFC-23 will have surpassed that of the developed nations under the BAU
33	scenario.

34 Introduction

35	Trifluoromethane (CHF ₃ , HFC-23) is a potent greenhouse gas (GHG) regulated
36	under the Kyoto Protocol with a global warming potential (GWP) of 14800 over a 100
37	year time horizon and an atmospheric lifetime of 270 years. ¹ HFC-23 is an
38	unavoidable by-product in the production of chlorodifluoromethane (CHClF ₂ ,
39	HCFC-22) which is applied widely in air conditioning, commercial refrigeration,
40	extruded polystyrene (XPS) foams (termed "dispersive production"), and also used as
41	a feedstock in Pentafluoroethane (CF ₃ CHF ₂ , HFC-125) production ² and
42	fluoropolymer manufacture ³ (termed "feedstock production"). Bottom-up estimates
43	show that before 2001 developed countries dominated in HFC-23 production, while
44	thereafter developing countries took over the leading role due to a substantial increase
45	of HCFC-22 production since the 1990s. Due to the lack of market for the by-product
46	HFC-23, it has historically been directly emitted to the atmosphere from the HCFC-22
47	production facilities, and this practice continues to a significant extent today. ⁴
48	In 2007, the Montreal Protocol Parties reached an agreement with an accelerated
49	phase-out schedule for production and consumption of HCFCs for dispersive
50	applications in developed and developing countries. ⁵ Dispersive production of HCFCs
51	in developing countries including China, will be subject to a phase-out beginning with
52	a freeze in 2013 at the baseline level of the average of 2009 and 2010 ODP-weighted
53	production, followed by a 10% reduction with respect to that by 2015, a 35%
54	reduction by 2020, a 67.5% reduction by 2025 and a 97.5% reduction by 2030. 6

4

55	However, the production of HCFC-22 for use as feedstock is unrestricted currently
56	and for the foreseeable future. Therefore, future HFC-23 production is anticipated to
57	be controlled by the increase of HCFC-22 feedstock production versus the decrease of
58	HCFC-22 dispersive production.
59	Abatement of HFC-23 emissions is an important factor contributing to the
60	difference between HFC-23 production and its actual emission. Since 2006,
61	destruction (incineration) of HFC-23 has been implemented in China under the United
62	Nations Framework Convention on Climate Change's (UNFCCC) Clean
63	Development Mechanism (CDM). There are a total of 19 CDM projects globally, with
64	11 of these located in China. Four Chinese CDM projects started in 2006, followed by
65	five starting in 2007, another starting in 2008 and a final project starting in 2009. ⁷
66	When expiration of the first seven-year crediting period of CDM projects in China
67	starts in 2013, whether the abatement measures continue or not will certainly have an
68	impact on future HFC-23 emissions in China and globally.
69	HFC-23 emissions from China are suspected to have made the biggest contribution
70	to the recent annual global emissions, especially to the increase of HFC-23 emissions
71	in developing countries. ⁴ Li et al. revealed the significance of HFC-23 emissions in
72	China for the period Nov-2007 to Dec-2008, which were estimated to contribute 74%
73	to global HFC-23 emissions and 95% to total East Asian HFC-23 emissions. ⁸ A
74	number of other studies have estimated HFC-23 emissions from China. The earliest of
75	these used a tagged-tracer simulation in a 3D transport model and a tracer-ratio
76	technique and estimated the emission to be 10 ± 4.6 Gg/yr for the period Apr-2004 to

77	May-2005. ⁹ More recent studies show a discrepancy among estimates, e.g., top-down
78	estimates 6.2 \pm 0.7 Gg/yr for 2008, ¹⁰ 12 (8.6–15) Gg/yr for the period Nov-2007–
79	Dec-2008, ¹¹ 10 (7.2–13) Gg/yr for the period Nov-2007–Dec-2008, ⁸ and a bottom-up
80	estimate 13.0 Gg/yr for 2008. ¹²
81	While these recent studies do provide insight into annual emissions for specific
82	years, in order to understand the driving forces behind Chinese HFC-23 emissions,
83	there is the need for a long-term assessment of Chinese HFC-23 production,
84	abatement and emission. In this study, we first compile comprehensive inventories of
85	historical HFC-23 production, abatement and emission in China for the period 1980-
86	2012, and gain some insight into the factors governing these processes. We then
87	project these factors forward through the year 2050 to illustrate their influence on
88	future HFC-23 emissions. Finally, we quantify past, current and future contributions
89	from China, from the developing countries excluding China and from the developed
90	countries to the atmospheric abundance of HFC-23.

91 Estimating historical emissions

92 HCFC-22 production

Only total HCFC (not individual HCFC) production data are available from the data center of United Nations Environment Programme.¹³ Even if we assume that HCFC-22 makes up 100% of the total production (indeed HCFC-22 is the largest contributor), we could not calculate the total HCFC-22 production values because the

97	feedstock production information is not obligatory to the public and not shown in this
98	data set. Therefore, we could not use this data set. Fortunately, information from other
99	sources for some years is available. Annual production for HCFC-22 was obtained in
100	some nation-wide production surveys, ¹⁴ as well as specific information of components
101	of HCFC-22 production from 2000 onwards including domestic dispersive and
102	feedstock production and exported dispersive and feedstock production. The data
103	reveal that HCFC-22 production increased from 70 Gg/yr in 2000 to 549 Gg/yr in
104	2010. Production data for 2011 and 2012 are available from industry market websites
105	(http://www.chinaiol.com/). After summing up the monthly reported production,
106	annual total production was estimated to be 530 in 2011 and 543 Gg/yr in 2012.
107	Production data for the period 1980-1999 are sparse. In the late 1950s, trial
108	production of HCFC-22 started in China, and by the end of the 1970s, HCFC-22
109	production amounted to less than 2 Gg/yr. Thereafter, due to the expansion of freezers,
110	air conditioners, and fluoropolymer industrial sector, the demand for HCFC-22
111	increased rapidly. The production in the year 1990 was estimated to be 12 Gg/yr. For
112	1997, HCFC-22 total production was officially reported in the document of National
113	Program for Ozone-depleting Substances Phase-out in China to be 40 Gg/yr. ¹⁵
114	HCFC-22 production in 1998 was estimated to be 44 Gg/yr. ¹⁶ Production data for
115	other missing years in the 1980s and 1990s were interpolated linearly between the
116	values stated above. The total production in these two decades were really small,
117	about one fiftieth of production in 2010, therefore, errors in the values for these
118	decades will not strongly influence the total production from 1980 to 2012.

119 Co-production ratio of HFC-23/HCFC-22

120	Co-production ratio of HFC-23/HCFC-22 (mass ratio) is a crucial parameter for
121	calculating the HFC-23 production and subsequent emissions. In order to produce
122	Certified Emission Reduction (CER) credits from HFC-23 incineration, CDM plants
123	continuously monitored HFC-23 and HCFC-22 production. This information is well
124	documented in the submitted CDM project monitoring reports, which typically span
125	2–6 months of production. Co-production ratios for the period 2006–2013 are
126	available in these monitoring reports, which can be downloaded from the CDM
127	project database. ⁷ For the years 2002–2004, Project Design Documents (PDD)
128	provide the more "historical" co-production ratios. Individual ratios from 264
129	monitoring reports (accessed as of 1 st July 2013) and 11 PDD for 11 projects in China
130	are shown in supporting information (SI) Fig. S1, as well as values from CDM
131	HFC-23 projects in other countries (Project 0807 in Argentina was excluded due to
132	incomplete information in the monitoring reports). Independent-samples t-tests show
133	that there is no significant difference between co-production ratios in China and in
134	other countries (2-tailed).
135	The red hollow circles in Fig. S1 show the annual mean co-production ratios
136	weighted by the HCFC-22 production in each plant. Note that for estimating the
137	annual mean co-production ratio for each year, production of HFC-23 and HCFC-22
138	in some monitoring reports were divided into two parts weighted by the number of
139	days inside or outside of that year if that monitoring period crossed over two years.
140	The calculated annual mean co-production ratios reveal a slight decrease over time,

8

141	from 3.31% in 2002 to 2.83% in 2012. The annual relative standard deviations of the
142	co-production ratios from 11 facilities were highest in 2003 (29%) and lowest in 2012
143	(11%). Ratio data for the years 2006 and 2007 were excluded in this comparison since
144	most projects had not been launched yet in these two years. For estimating the
145	co-production ratio prior to 2002 and in 2005, 2006 and 2007, a linear extrapolation
146	of the 2002–2004 and 2008–2012 ratio data was used.
147	Based on the total HCFC-22 production from the CDM monitoring reports and the
148	estimated HCFC-22 total production from Section 0, we attribute $48 \pm 2\%$ of total
149	annual Chinese HCFC-22 production to the CDM projects during 2009–2012.
150	Considering CDM projects cover almost half of total HCFC-22 production in China,
151	we made the simple assumption that the mean co-production ratios of
152	HFC-23/HCFC-22 in these CDM projects represent the mean values from all
153	HCFC-22 production plants in China.
154	Incineration of HFC-23 from HCFC-22 production
155	Annual amounts of HFC-23 involved in CDM projects in China are shown in Fig.
156	S2. Eleven projects have produced HFC-23 emission reductions of 32 Gg eligible for
157	CER credits between 2006 and 2012 (shown as the left bar for each year in Fig. S2).
158	However, CER-eligible emission reductions are smaller than the real HFC-23
159	emission reductions, since some of the HFC-23 incinerations are not eligible for CER
160	credits (for instance, if the waste gas generation ratio or HCFC-22 production
161	exceeded the plant's historic values as documented in the Project Design Document).

162	Each project monitoring report accounted for actual HFC-23 production, incineration,
163	sales, storage and releases, and annual 'non-release' amounts were determined (shown
164	as the right bar for each year in Fig. S2), which appear on average to be about 20%
165	(10%–24%) higher than the annual amounts eligible for CER credits (left bars).
166	Therefore, a total of about 38 Gg HFC-23 was actually prevented from being released
167	to the atmosphere during 2006–2012 compared to the 32 Gg CER-eligible reductions.
168	Since all CDM projects in China were in operation by 2009, the annual amount
169	eligible for CER credits and "non-release" amounts have been relatively constant
170	thereafter.
171	Assembling an inventory of HFC-23 emissions
172	Annual total production of HFC-23 is calculated as the sum of annual domestic
173	HCFC-22 production for feedstock and dispersive uses and exported HCFC-22
174	production for feedstock and dispersive uses (compiled in Sect. 0), multiplied by the
175	mean annual co-production ratios of HFC-23/HCFC-22 (Sect. 0). Then Eq. 1 was
176	used for estimating emissions of HFC-23. HFC-23 may be used as feedstock in the
177	production of Halon-1301, as a fire extinguishing agent or as an etching agent in the
178	semiconductor industry. The application of HFC-23 in these industrial sectors was
179	assumed negligible, according to the assumption made for the global estimate as
180	described by Miller et al. ⁴ The overall uncertainties of annual total HFC-23 emissions
181	were estimated based on uncertainties assigned to the individual components (see
182	Table S1). The assigned uncertainties for earlier time are larger than those for later

183	time, e.g., the uncertainties of HCFC-22 production during 1980–1996 and 1999 are
184	50%, while the uncertainties of HCFC-22 production during $2000 - 2010$ are 5%.
185	$\mathbf{E} = \mathbf{P} - \mathbf{A} - \sum \mathbf{C}_i + \sum \mathbf{E}_i \qquad (1)$
186	Here E is annual total emission (Gg/yr), P is annual total production (Gg/yr), A is
187	annual non-release amount (Gg/yr) by abatement measures (e.g., CDM projects), C_i
188	is consumed amount in application sector i (Gg/yr), and E_i is emission from
189	application sector <i>i</i> (Gg/yr). Second National Communication on Climate Change of
190	The People's Republic of China shows that emissions of HFC-23 in semiconductor
191	sector in 2005 was 0.0044 Gg/yr, which is about $1/200$ of the estimated total HFC-23
192	emissions ¹⁷ . Thus $\sum C_i$ and $\sum E_i$ (in Eq. 1) were assigned to zero.
193	Historical emissions in China: 1980–2012
193 194	Historical emissions in China: 1980–2012 Historical HFC-23 emissions
193 194 195	Historical emissions in China: 1980–2012 Historical HFC-23 emissions Estimates of the annual HFC-23 production and emission in China for the period
193 194 195 196	Historical emissions in China: 1980–2012 Historical HFC-23 emissions Estimates of the annual HFC-23 production and emission in China for the period 1980–2012 are plotted in Fig. 1. The HFC-23 production increased from 0.08 ± 0.05
193 194 195 196 197	Historical emissions in China: 1980–2012 Historical HFC-23 emissions Estimates of the annual HFC-23 production and emission in China for the period 1980–2012 are plotted in Fig. 1. The HFC-23 production increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr in 2012. Note that the growth rate started to
193 194 195 196 197 198	Historical emissions in China: 1980–2012Historical HFC-23 emissionsEstimates of the annual HFC-23 production and emission in China for the period1980–2012 are plotted in Fig. 1. The HFC-23 production increased from 0.08 ± 0.05Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr in 2012. Note that the growth rate started toaccelerate in the mid-1990s. For the period 1980–1990, the annual growth rate was
193 194 195 196 197 198 199	Historical emissions in China: 1980–2012 Historical HFC-23 emissions Estimates of the annual HFC-23 production and emission in China for the period 1980–2012 are plotted in Fig. 1. The HFC-23 production increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr in 2012. Note that the growth rate started to accelerate in the mid-1990s. For the period 1980–1990, the annual growth rate was estimated to be 0.04 Gg/yr, while for the period 1990–2000, the growth rate increased
193 194 195 196 197 198 199 200	Historical emissions in China: 1980–2012 Historical HFC-23 emissions Estimates of the annual HFC-23 production and emission in China for the period 1980–2012 are plotted in Fig. 1. The HFC-23 production increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr in 2012. Note that the growth rate started to accelerate in the mid-1990s. For the period 1980–1990, the annual growth rate was estimated to be 0.04 Gg/yr, while for the period 1990–2000, the growth rate increased to 0.18 Gg/yr. After 2000, the annual growth rate was 1.1 Gg/yr. During 2000–2010,

- all three HFC-23 production components were found to increase, including HCFC-22
- 202 domestic dispersive production, feedstock production and exported production.

203	Contribution from domestic dispersive production to national totals was about 60% at
204	the beginning of 2000s and declined to about 40% in 2010, while contributions from
205	domestic feedstock production increased from 25% to 35% during this period.
206	Contributions from exported production are about 25%.
207	The annual national total HFC-23 emissions were equal to the HFC-23 production
208	until 2006 when CDM projects were launched to abate HFC-23 in China. Due to the
209	emission reductions in 2006, the actual emissions of HFC-23 were 0.4 Gg/yr lower
210	than the production. In 2006, HFC-23 emissions reached a peak of 10.5 ± 1.8 Gg/yr
211	and then decreased to a minimum of 7.3 ± 1.3 Gg/yr in 2008 and 2009, followed by a
212	slight increase to 8.5 ± 2.1 Gg/yr in 2012 when CDM projects abated about 45% of
213	the HFC-23 produced. Of note is that since HCFC-22 production in non-CDM plants
214	were started later than that of CDM plants, the co-production ratios of
215	HFC-23/HCFC-22 in non-CDM plants may be lower than those in CDM plants due to
216	technical improvement. This could lead to the result that the annual HFC-23
217	production and emissions in China in recent years are smaller than those estimated in
218	this study. However, information about recent co-production ratios in non-CDM
219	plants is currently very limited.
220	Comparison with other estimates
221	We compared our results with other published estimates using either bottom-up or

- We compared our results with other published estimates using either bottom-up or
- top-down approaches (Fig. 2). Using observation data from Hateruma station, a 222
- tagged simulation from three-dimensional transport model and a tracer-ratio technique, 223

224	the HFC-23 emissions from China for May-2004 to May-2005 were estimated to 10 \pm
225	4.6 Gg/yr.9 Based on observation data from three East Asian stations and inverse
226	modeling, the HFC-23 emissions in 2008 were determined to be 6.2 ± 0.7 Gg/yr. ¹⁰
227	Our estimates are close to these two estimates. However, larger differences are found
228	when compared to estimates of Li et al. ⁸ and Kim et al. ¹¹ who used observation data at
229	the Gosan station and a tracer ratio method. It seems that the estimate in Kim et al. ¹¹ is
230	identical to the global emissions which is derived from 2-D 12-box model inversions
231	of AGAGE observations. ⁴ Emissions for the period May-2010 to May-2011 estimated
232	using observation data at Shangdianzi station in Yao et al. ¹⁸ are significantly lower
233	than our estimates. HFC-23 is mostly emitted from point sources (HCFC-22
234	production plants), while sources of reference species carbon monoxide (CO) adopted
235	by Yao et al. ¹⁸ and HCFC-22 adopted by Li et al. ⁸ and Kim et al. ¹¹ are widely spread.
236	Therefore, the assumption of co-location of target species and reference species in the
237	tracer-ratio method used in three studies above is not fully valid.
238	Comparisons were made with other bottom-up estimates (Fig. 2). Our estimates
239	agree well with the officially reported value of 9 Gg/yr for 2005 in Second National
240	Communication from China to UNFCCC ¹⁷ . EDGAR v4.2 provides a time series of
241	bottom-up estimates of HFC-23 emissions in China until 2008, which appears close to
242	our estimates within 1990–2000 but becomes higher (40% on average for the period
243	2001–2008) than our estimates thereafter. Note that the EDGAR v4.2 estimates for
244	China are even larger than the global emissions in 2007 and 2008. Our estimate
245	agrees with the estimates for $2000-2008^{14}$ and for $2000-2010^{19}$, even though there are

246	some minor differences in parameters used in these three studies. e.g. a constant
247	co-production ratio of 2.85% for all years was used by Cui et al. ¹⁹ while different
248	annual mean co-production ratios were used in this study. Relatively big differences
249	occurred in 2006 and 2007 among these three bottom-up estimates. Difference
250	between HFC-23 production and emissions in 2006 is estimated as 3.5 Gg/yr in Feng
251	et al. ¹⁴ , larger than the other estimates, which is likely due to being unaware of the
252	difference between the designed reduction capacity and the actually achieved
253	destruction of HFC-23 in that year.
254	National and Global perspective
255	Relatively complete information of other HFC emissions is available from Li et al. ⁸
256	for 2008. After comparing HFC-23 emissions estimated in this study with other HFC
257	emissions in Li et al. ⁸ , we found that HFC-23 emissions rank second after HFC-134a
258	in the contribution to national total HFC emissions (Fig. 3, lower left). However, in
259	terms of the100-year GWP, ¹ the contribution pattern becomes vastly different.
260	GWP-weighted HFC-23 emissions were calculated to be 108 ± 20 Tg/yr CO ₂ -eq in
261	2008 and emissions of other HFCs were calculated to be 29 ± 8 Tg/yr CO ₂ -eq. This
262	shows that HFC-23 emissions constituted $79 \pm 6\%$ of the national total
263	GWP-weighted HFC emissions, revealing a dominant role of HFC-23 in the
264	GWP-weighted HFC emissions in the year 2008 in China.
265	The contribution of HFC-23 emissions from China to the global total is also plotted
266	in Fig. 3 (top panel). Global emissions for the period 1980-2009 were derived from

267	top-down inversions in Miller et al. ⁴ The calculated contributions from Chinese
268	emissions to global emissions displayed a gradual increase from $2 \pm 1\%$ in 1980 to 20
269	\pm 6% in 2000 followed by a sharp increase to 77 \pm 23% in 2005. The growth rate of
270	contribution after 2000 is much higher than before 2000, which is consistent with the
271	accelerated growth rate of HFC-23 production in China after 2000.
272	Projecting emissions in China: 2013–2035
273	Policy options and emission scenarios
274	First, we defined our business-as-usual (BAU) scenario. There are four components
275	of HCFC-22 production in China. The first one is domestic dispersive production,
276	which will be subject to Montreal Protocol phase out schedule of a 10% reduction by
277	2015 compared to the baseline of the average of 2009 and 2010 production, a 35%
278	reduction by 2020, a 67.5% reduction by 2025 and a 97.5% reduction by 2030 that is
279	averaged over the next 10 years. The second one is domestic feedstock production,
280	which is extrapolated based on GDP growth of China provided by the EIA ²⁰ . Tests
281	show that the standardized domestic HCFC-22 feedstock production is significantly
282	correlated with the standardized GDP during the period 2000–2012 (P< 0.05), and that
283	the slope for this correlation is close to "1" (see Fig. S3). We also chose the GDP
284	Reference Case based on purchasing power parity out of three GDP projections
285	offered in the report, which is the same input as used in the global HFC-23 emission
286	projections by Miller and Kuijpers ²¹ . The relative growth rate of GDP in this case is

287	estimated to be 8.12% during 2007–2015 and will decrease afterwards to 3.49%
288	during 2030–2035. The third HCFC-22 production component is exported dispersive
289	production, which is assumed to follow the Montreal Protocol phase out schedule as
290	well since dispersive production is mainly exported to developing countries. The last
291	component is exported feedstock production, which is extrapolated based on GDP
292	growth of the whole world excluding China. EIA (2010) only provided GDP
293	projection to 2035, thus we linearly extroplated GDP to 2050 based on values in
294	2030–2035. The average of the annual mean co-production ratio of HFC-23/HCFC-22
295	during 2008–2012 in China, 2.82%, was used for the projection calculation. In this
296	BAU scenario, it was assumed that the CDM projects in China are approved for a
297	total of three consecutive crediting periods ending between 2027 and 2030.
298	Second, we defined a Less Mitigation (LM) scenario, in which the abatement of
299	HFC-23 in CDM projects will cease after the first crediting period and no abatement
300	will exist in China thereafter. The CDM projects in China will end their first crediting
301	period during 2013–2016 after 7 years of operation. The European Commission
302	decided that the EU would cease the purchase of CER credits derived from emission
303	mitigation of HFC-23 and N_2O produced in industrial processes after May 2013, ²²
304	leading to loss of the purchasers of CER credits. So Chinese CDM projects are at risk
305	of being stopped, even though all of them were registered as projects with renewable
306	crediting periods, which will lead to less mitigation of HFC-23 emissions.
307	Finally, we defined a Best Practice (BP) scenario which represents that maximum
308	effort will be made to tackle HFC-23 emissions, namely installing incineration

16

309	facilities in all plants. We assumed that emission reductions from the new incineration
310	facilities will start in 2016, which would be linearly increased to full reduction of
311	produced HFC-23 after 6 years' capacity construction by 2022. Miller and Kuijpers
312	(2011) have indicated that the effort of process optimization of co-production ratio of
313	HFC-23/HCFC-22 would not be an ideal solution, since only 44% of global emissions
314	projected in their reference scenario can be reduced if process optimization is adopted
315	as reduction measures. We also tested projecting emissions if implementing process
316	optimization in Chinese plants with the co-production ratio decreasing linearly from
317	2.82% in 2016 to 1.37% in 2030 which was achieved by one of the facilities in the
318	developed world. ²³ Results show the emission reduction would be 31% in 2020, 52%
319	in 2030 and 51% in 2050 compared to BAU scenario (See Fig. 4 bottom panel).
320	Significant emissions remain even after implementing documented process
321	optimizations; therefore, process optimizations were not considered as the measures
322	in BP scenario.
323	Projected emissions and identifying driving forces
324	Figure 4 shows the projected HFC-23 production, abatement and emission in China
325	for the period 2013–2035 under the BAU scenario. The projected emissions show a
326	"plateau" with a growth rate of only 0.15 Gg/yr during 2008–2027, which is a result
327	of compensation of HFC-23 production increase from HCFC-22 feedstock production
328	and decrease from HCFC-22 dispersive production, either domestic or exported.
329	During this period, CDM projects were assumed to generate constant amounts of

330	HFC-23 emission abatement. Even without CDM projects, the emissions will be
331	relatively constant in the 2013–2027 period, but at a plateau which is 6.9 Gg/yr higher.
332	Since the dispersive production of HCFC-22 for domestic use or export is strictly
333	regulated by the phase out schedule of the Montreal Protocol, the total HFC-23
334	emissions (and production) are greatly dependent on the extent of increase of
335	HCFC-22 feedstock production, which means that if the actual growth rate of
336	HCFC-22 feedstock production is greater or less than the assumed growth rate in our
337	BAU scenario, the plateau will be upward or downward, respectively.
338	After a gradual annual increase of 0.15 Gg/yr during 2008–2027, there is a steep
339	increase of 1.5 Gg/yr HFC-23 emissions up to 2031. At the end of 2027, six CDM
340	projects are expected to expire after three crediting periods, followed by expirations
341	of three projects in 2028, one project in 2029 and the last one in 2030. Therefore,
342	changes in HFC-23 emissions in this stage are mostly driven by the CDM projects.
343	After 2031, the HCFC-22 feedstock production becomes the sole driving forcing to
344	the HFC-23 emissions since dispersive production reaches the minimum level
345	required by the Montreal Protocol in 2030. In 2050, the total HFC-23 emissions (and
346	production) in China will reach 26.4 Gg/yr, equal to 391 Tg/yr CO ₂ emissions.
347	If the CDM projects are not renewed after the first crediting period as assumed in
348	the LM scenario and no other abatement measures take place, the steep upturn of
349	HFC-23 emissions could occur in the period 2013–2016 (Fig. 4, lower panel). On the
350	other hand, if besides CDM projects, new incineration facilities start to be installed at
351	all plants and full incineration is commenced in 2022 (BP scenario), the projected

352	HFC-23 emissions will decrease to approximately zero. By this point, the major factor
353	controlling the annual dynamics of Chinese HFC-23 emissions for the next decade
354	(2013–2022) becomes competition between closing existing abatement facilities and
355	increasing new abatement facilities.
356	Over the period 2013–2050, cumulative emissions of HFC-23 in China under BAU
357	scenario are estimated to be 609 Gg (9015 Tg CO_2 -eq), which approximates the
358	China's whole-year emissions of 9864 Tg CO_2 in 2012. ²⁴ Velders et al. concluded that
359	the projected global HFC emissions in 2050 could be equivalent to 9-19% of
360	projected global CO ₂ emissions, but HFC-23 was not included in the emission
361	projection of the major HFCs. ²⁵ Cumulative emissions of HFC-23 in China estimated
362	in this study would amount to 5.3%–8.2% the total high and low estimates of CO_2
363	equivalents from HFCs over the period 2013-2050. Compared to BAU scenario,
364	cumulative emissions of HFC-23 under LM scenario will be 97 Gg higher (1436 Tg
365	CO ₂ -eq), while cumulative HFC-23 emission reductions of 557 Gg (8249 Tg CO ₂ -eq)
366	can be achieved under BP scenario.
367	Simulating atmospheric abundance and quantifying contributions
368	Atmospheric abundance of HFC-23 was simulated using historical and projected
369	emissions and a simple 1-box model (Fig. 5). As input to the model, we used a
370	HFC-23 atmospheric lifetime of 222 years ²⁶ and 5.136×10^{21} g for the mass of the
371	atmosphere ²⁷ . For China, historical emissions for 1980–2012 derived from the
372	bottom-up estimates and emissions for 2013-2050 derived from BAU scenario

373	projection were used in this simulation. For developing countries excluding China and
374	developed countries, emissions for 1980-2008, 2009-2035 and for 2036-2050 are
375	derived from bottom-up estimates by Miller et al. ⁴ , projections by Miller and
376	Kuijpers ²¹ and extrapolation based on the projections, respectively.
377	Fig. 5 shows that the simulated HFC-23 atmospheric abundance for the period
378	1980–2009 driven by the estimated historical emissions agrees well with the historical
379	measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE)
380	network (the data were derived from Miller et al. ⁴), which suggests that it is adequate
381	to project future atmospheric abundance using this simple model. By the year 2050,
382	the simulated atmospheric abundance of HFC-23 is 82 ppt, an increase of 233%
383	relative to its 2012 value. This yields a radiative forcing of 16 mWm ⁻² in 2050
384	assuming radiative efficiencies taken from IPCC (2007). ²⁸ Accelerated growth of
385	HFC-23 atmospheric abundance during 2013–2050 was found, which is caused by the
386	sustained increase of projected HFC-23 emissions from China and other developing
387	countries. If the HFC-23 emissions in China are subject to LM scenario, the simulated
388	HFC-23 atmospheric abundance will reach 89 ppt by the year 2050, while if the
389	HFC-23 emissions in China are subject to the BP scenario, HFC-23 atmospheric
390	abundance will reach only 41 ppt (see Fig. 5). This reveals that if the measures
391	(incineration) in BP scenario are implemented in China, HFC-23 atmospheric
392	abundance in middle of 21^{st} century could be cut to half of abundance simulated in
393	BAU scenario.

394 We also quantified contributions from China, developing countries excluding China

395	and developed countries to the atmospheric abundance (Fig. 5, lower panel), which
396	are compared with the contributions to annual global emissions giving 1980, 1995,
397	2013, 2025 and 2035 as examples (Fig. 5, upper and middle panels). Note that
398	contributions from emissions before 1980 (dash line in the plot) were attributed to
399	developed countries since almost 100% of global emissions then were from developed
400	countries revealed by Miller et al. ⁴ The upper panel of Fig. 5 shows contribution of
401	Chinese annual emissions to global emissions is 2% in 1980, which increased to 68%
402	in 2013 and 76% in 2050, while the middle panel of Fig. 5 shows that the
403	accumulated contributions of emissions from China to the annual global atmospheric
404	abundance were significantly delayed compared to the annual emission contributions
405	to global emissions, e.g. accumulated Chinese emissions only contribute 32% of
406	atmospheric abundance in 2013 compared to annual Chinese emissions' contribution
407	to 68% of global emissions. In this sense, historical emissions from developed
408	countries accounted for most of atmospheric burden up to now (e.g., 61% in 2013),
409	even though now China is contributing more than 60% to current annual global
410	emissions. We estimated that in circa 2027, China will surpass the developed
411	countries with respect to the accumulated contributions to the global atmospheric
412	abundance. This delay is of course due to the long atmospheric lifetime of HFC-23.

413 *Acknowledgments*

We thank Andreas Stohl and Rona L. Thompson at Norwegian Institute for Air
Research (NILU) for numerous constructive comments and suggestions on this

21

416 manuscript.

417 Supporting Information Available

- 418 Uncertainties of components in assembling an inventory of HFC-23 emissions are
- shown in Table S1. Individual co-production ratios of HFC-23/HCFC-22 in China and
- 420 other countries are presented in Figure S1. Annual amounts of HFC-23 involved in the
- 421 CDM HFC-23 emission abatement projects are provided in Figure S2. The correlation
- 422 between the standardized domestic HCFC-22 feedstock production and the
- 423 standardized GDP in China are shown in Figure S3. This information is available free
- 424 of charge via the Internet at <u>http://pubs.acs.org/</u>.

425 Reference

426	(1)	Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.;
427		Lean, J.; Lowe, D. C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Dorland, R. V.,
428		Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The
429		Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of
430		the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen,
431		Z.; Marquis, Z.; Avery, K. B.; Tignor, M.; Miller, H. L., Eds.; Cambridge University Press:
432		Cambridge, United Kingdom, 2007; pp 129-234.
433	(2)	United Nations Multilateral Fund Secretariat. Terms of reference (TOR) for the technical audit
434		of HCFC production in Article 5 countries, 2012.
435		http://www.unmfs.org/policydoc/policy60p713.htm (accessed October 1, 2013).
436	(3)	McCulloch, A.; Lindley, A. A. Global emissions of HFC-23 estimated to year 2015. Atmos.
437		Environ. 2007, 41 (7), 1560-1566.
438	(4)	Miller, B. R.; Rigby, M.; Kuijpers, L. J. M.; Krummel, P. B.; Steele, L. P.; Leist, M.; Fraser, P.
439		J.; McCulloch, A.; Harth, C.; Salameh, P.; Mühle, J.; Weiss, R. F.; Prinn, R. G.; Wang, R. H. J.;
440		O'Doherty, S.; Greally, B. R.; Simmonds, P. G. HFC-23 (CHF3) emission trend response to
441		HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures. Atmos.
442		Chem. Phys. 2010, 10 (16), 7875-7890.
443	(5)	United Nations Environment Programme. Report of the 9th Meeting of the Parties to
444		theMontreal Protocol on Substances that Deplete the Ozone Layer. UNEP/OzL, Pro. 19/7,
445		Nairobi, Kenya, 2007.

Environmental Science & Technology

446	(6)	United Nations Environment Programme (UNEP). Handbook for the Montreal Protocol on
447		Substances That Deplete the Ozone Layer, seventh ed., Nairobi, Kenya, 2009.
448		http://ozone.unep.org/Publications/MP_Handbook/MP-Handbook-2009.pdf (accessed May 5,
449		2011).
450	(7)	United Nations Framework Convention on Climate Change: Clean Development Mechanism
451		(CDM). 2012. http://cdm.unfccc.int/Projects/projsearch.html (accessed December 20, 2012).
452	(8)	Li, S.; Kim, J.; Kim, K. R.; Mühle, J.; Kim, S. K.; Park, M. K.; Stohl, A.; Kang, D. J.; Arnold,
453		T.; Harth, C. M.; Salameh, P. K.; Weiss, R. F. Emissions of Halogenated Compounds in East
454		Asia Determined from Measurements at Jeju Island, Korea. Environ. Sci. Technol. 2011, 45
455		(13), 5668-5675.
456	(9)	Yokouchi, Y.; Taguchi, S.; Saito, T.; Tohjima, Y.; Tanimoto, H.; Mukai, H. High frequency
457		measurements of HFCs at a remote site in east Asia and their implications for Chinese
458		emissions. Geophys. Res. Lett. 2006, 33 (21), L21814.
459	(10)	Stohl, A.; Kim, J.; Li, S.; O'Doherty, S.; Mühle, J.; Salameh, P. K.; Saito, T.; Vollmer, M. K.;
460		Wan, D.; Weiss, R. F.; Yao, B.; Yokouchi, Y.; Zhou, L. X. Hydrochlorofluorocarbon and
461		hydrofluorocarbon emissions in East Asia determined by inverse modeling. Atmos. Chem.
462		Phys. 2010, 10 (8), 3545-3560.
463	(11)	Kim, J.; Li, S.; Kim, K. R.; Stohl, A.; Mühle, J.; Kim, S. K.; Park, M. K.; Kang, D. J.; Lee, G.;
464		Harth, C. M.; Salameh, P. K.; Weiss, R. F. Regional atmospheric emissions determined from
465		measurements at Jeju Island, Korea: Halogenated compounds from China. Geophys. Res. Lett.
466		2010 , <i>37</i> (12), L12801.
467	(12)	Emission Datebase for Global Atmospheric Research (EDGAR), release version 4.2.
468		European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment
469		Agency (PBL): 2011. http://edgar.jrc.ec.europa.eu (accessed March 22, 2012).
470	(13)	Ozone Secretariat Data Access Centre; United Nations Environment Programme (UNEP).
471		ODS Production Reported to UNEP, 2013.
472		http://ozone.unep.org/Data_Reporting/Data_Access/.
473	(14)	Feng, J.; Yan, H.; Zhang, B.; Zhang, J. Prediction of HFC-23 Emission and Analysis of CDM
474		Project Impact in China. Acta Scientiarum Naturalium Universitatis Pekinensis 2012, 48 (2),
475		310-316.
476	(15)	State Environmental Protection Administration (SEPA), the People's Republic of China.
477		National Program for Ozone-depleting Substances Phase-out in China (in Chinese), Beijing,
478		China, 1999.
479		http://www.gdepb.gov.cn/wrfz/gdlxgjgy/ods/200808/P020080806358145713200.pdf
480		(accessed July 19, 2011).
481	(16)	Gas Specialization Website. Organic Fluorine Industry Situation and Development Strategy,
482		2013.
483		http://www.cngspw.com/vNews/ViewNews.asp?DocID=newsY2005M09D11H16m52s04
484		(accessed July 1, 2013).
485	(17)	National Development and Reform Commission of China. Second National Communication
486		on Climate Change of The People's Republic of China, Beijing, China, 2012.
487		http://unfccc.int/essential_background/library/items/3599.php?rec=j&priref=7666#beg
488		(accessed Februry 18, 2013).
489	(18)	Yao, B.; Vollmer, M. K.; Zhou, L. X.; Henne, S.; Reimann, S.; Li, P. C.; Wenger, A.; Hill, M.

490		In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs)
491		at the Shangdianzi regional background station, China. Atmos. Chem. Phys. 2012, 12 (21),
492		10181-10193.
493	(19)	Cui, Y.; Lin, H.; Yang, L.; Zheng, W. Analysis on HFC-23 Emission Reduction Potential in
494		China's Fluorine Industry. Advances in Climate Change Research 2013, 9 (2), 139-143.
495	(20)	US Energy Information Administration. International Energy Outlook 2010, Reference Case
496		Projections, Appendix A, 2010.
497		http://www.eia.gov/forecasts/archive/ieo10/pdf/0484(2010).pdf (accessed July 20, 2013).
498	(21)	Miller, B. R.; Kuijpers, L. J. M. Projecting future HFC-23 emissions. Atmos. Chem. Phys.
499		2011 , <i>11</i> (24), 13259-13267.
500	(22)	EC, Emissions trading: Commission welcomes vote to ban certain industrial gas credits. In
501		European Commission: Brussels, Belgium, 2011.
502	(23)	Duncan Rotherham. Greenhouse Gas Emission Reduction Verification Audit for Dupont's
503		Louisville Works Freon @22 Plant, Final Report (ICF Consulting) Toronto, Canada, 2004.
504		http://cdm.unfccc.int/public_inputs/inputam0001/Letter_Dupont_Annex2_03June04.pdf
505		(accessed October 1, 2013).
506	(24)	Olivier, J. G. J.; Janssens-Maenhout, G.; Muntean, M. P.; J.H.A.W. Trends in global CO2
507		emissions - 2013 report, PBL / JRC report 83593; EUR 26098 EN; ISBN 978-94-91506-51-2,
508		October. 2013.
509	(25)	Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The large
510		contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci.
511		U.S.A. 2009 , <i>106</i> (27), 10949-10954.
512	(26)	World Meteorological Organization (WMO). Scientific assessment of ozone depletion: 2010.
513		Global Ozone Research and Monitoring Project — Report No. 52, Geneva, Switzerland, 2011.
514		http://ozone.unep.org/Assessment Panels/SAP/Scientific Assessment 2010/index.shtml
515		(accessed January 1, 2012).
516	(27)	Lide, D. R., Handbook of Chemistry and Physics. CRC press: Boca Raton, FL, 1996.
517	(28)	Intergovernmental Panel on Climate Change (IPCC). Fourth Assessment Report (AR4).
518		Working Group 1, Chapter 2, Changes in Atmospheric Constituents and in Radiative Forcing,
519		2007. <u>http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf</u> (accessed July
520		13, 2011).

522 **Figure Captions**

Fig. 1. Bottom-up estimates of annual HFC-23 production and emission in China for the period
1980–2012. The global HFC-23 emissions were derived from top-down estimates for 1980–1989
and bottom-up estimates for 1990–2008⁴ and from projections for 2009–2012²¹. Note that the
period 1980–1995 on the X-axis is compressed to show the changes during 1995–2012 more
clearly.

530 Fig. 2. Comparison with other published estimates of HFC-23 emissions in China, as specified in the

531 legend at the top. Square symbols denote bottom-up estimates and diamond symbols denote top-down

estimates. Note that since target time periods in most of the studies are after 2000, the period 1980–

533 2000 on X-axis is compressed to show the comparisons for 2000–2012 more clearly. X-error bar in the

plot represents the span of the target period in the respective study, for example 14 months of

535 Nov-2007–Dec-2008 in Li et al.⁸ while 12 months of Jan-2008–Dec-2008 in Stohl et al.¹⁰

537 Fig. 3. Annual contributions of HFC-23 emissions from China to global total emissions (upper panel)

539 Global emissions for the period 1980–2009 were derived from top-down inversions in Miller et al.⁴

540 Emissions of HFC-23 are from this study, while emissions for other HFC emissions were derived from

541 Li et al.⁸ GWP values were taken from Forster et al.¹

and proportions of HFC-23 to the total, or GWP-weighted total, HFC emissions in China in 2008.

543 Fig. 4. Projected HFC-23 production, incineration and emissions in China for the period 2013–

550 Fig. 5. Simulation of HFC-23 atmospheric abundance and quantification of contributions from

551 China, developing countries excluding China and developed countries, as well as the annual

observed HFC-23 atmospheric abundance from AGAGE network. The upper panel shows

contributions of emissions from these three country categories to the annual global total emissions,

giving 1980, 1995, 2013, 2035 and 2050 as examples. The middle panel shows accumulated

contributions of emissions from these three country categories to the global atmospheric

abundance in the respective year. The lower panel shows the simulated HFC-23 atmospheric

abundance (left axis) using historical and projected emissions (Chinese emissions vary under BAU,

- LM or BP scenarios) and a simple 1-box model, and the corresponding radiative forcing (right
- 559 axis). The dashed line represents the HFC-23 atmospheric abundance caused by emissions before
- 560 1980, which decreases with time.